Flag Algebras on Limits of Graph Sequences

Today, we finally define some algebras \mathcal{A} and \mathcal{A}^{σ} . We try to develop an analogue for P(.,G) in the limit. We start by defining \mathcal{A} . We denote the set all graphs up to isomorphism by \mathcal{F} and the set of all graphs on exactly ℓ vertices by \mathcal{F}_{ℓ} . Let $\mathbb{R}\mathcal{F}$ be the set of all formal linear combinations of graphs in \mathcal{F} . This $\mathbb{R}\mathcal{F}$ will be used to derive \mathcal{A} . In order to do that, we need to somehow define addition and multiplication on $\mathbb{R}\mathcal{F}$.

1: How to *obviously* define the addition of elements in \mathbb{RF} and the multiplication by a real number?

Solution: For addition of $a, b \in \mathbb{RF}$, just add the coefficients together.

Recall we used linear combinations of graphs last time, but they had some extra interpretation using P(.,G). Our goal is to eventually have a similar interpretation for \mathbb{RF} and \mathcal{A} .

2: Let $F_1, F_2 \in \mathcal{F}$. Can you write $F_1 \cdot F_2$ as an element in $\mathbb{R}\mathcal{F}$ inspired by our efforts last time?

Solution:

$$F_1 \cdot F_2 = \sum_{F \in F_\ell} P(F_1, F_2; F) F,$$

where $v(F_1) + v(F_2) = \ell$. Notice, there is NO +o(1).

3: How to "define" a multiplication of $a, b \in \mathbb{RF}$?

Solution: One could say that having $a, b \in \mathbb{RF}$ it would be possible to do entry wise product from the previous exercise. A small trouble is that $F_1 \cdot F_2$ can be written in many ways as a linear combination so this is not a great multiplication.

In addition to the "uniqueness trouble" in multiplication for \mathbb{RF} , we would also like to enforce identities such as

$$=\frac{1}{3}\cdot + \frac{2}{3}\cdot + \frac{2}{3}\cdot + \cdot \cdot$$
 (1)

We do this by factorizing $\mathbb{R}\mathcal{F}$ by a suitable subspace \mathcal{K} . Let \mathcal{K} be a linear subspace of $\mathbb{R}\mathcal{F}$ generated by all elements of the form

$$F - \sum_{F' \in \mathcal{F}_{\ell}} P(F, F')F', \tag{2}$$

where $F \in \mathcal{F}$ and $v(F) \leq \ell$.

4: What is the value of (2) in our previous interpretation using P(.,G)?

Solution: 0

Finally, the algebra \mathcal{A} is $\mathbb{R}\mathcal{F}$ factorized by \mathcal{K} . Notice that $a, b \in \mathbb{R}\mathcal{F}$ belong to the same equivalence class iff a = b + c for some $c \in \mathcal{K}$.

This also fixes the uniqueness in multiplication (which we are not proving here). Personal note: I just think of it all as \mathbb{RF} , where some additional equations hold. Not as the formal \mathcal{A} . An analogue is \mathbb{Q} for \mathcal{A} and $\mathbb{Z} \times \mathbb{Z}$ for \mathbb{RF} . We get $\frac{1}{2} = \frac{2}{4} = \frac{4}{8} = \frac{3}{6} = \cdots$.

Now we try to make \mathcal{A} somehow useful by providing a similar interpretation as P(?,G) from last time. Notice we do not have +o(1) in multiplication, so we cannot really use P(?,G) but we will use limits of P(?,G).

Definition: A sequence of graphs $(G_n)_{n \in \mathbb{N}}$ is *convergent* if for every finite graph H, $\lim_{n \to \infty} P(H, G_n)$ exists.

Notice that the *limit of convergent sequence* can be viewed as vector of numbers in [0, 1] indexed by all finite graphs, i.e., a function $\mathcal{F} \to [0, 1]$.

5: Show that $(K_n)_{n \in \mathbb{N}}$ is convergent, where K_n is the complete graph on *n* vertices. What is the limit?

Solution: The limit is quite simple. If H is a complete graph, then the limit of $p(H, K_n)$ is 1, otherwise it is 0.

6: Show that $(P_n)_{n \in \mathbb{N}}$ is convergent, where P_n is a path on n vertices. What is the limit?

Solution: The limit is not difficult. For any H that contains an edge, $p(H, P_n)$ is 0 and if H has no edges, then $p(H, P_n) = 1$.

Now we get to the promised replacement of P(.,G). Let $Hom(\mathcal{A},\mathbb{R})$ be the set of all homomorphisms from \mathcal{A} to \mathbb{R} . So for any $\phi \in Hom(\mathcal{A},\mathbb{R})$ and $a, b \in \mathcal{A}$, we have that $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$. Since $p(H,G) \in [0,1]$, we consider only $Hom^+(\mathcal{A},\mathbb{R})$, which are homomorphism ϕ such that $\phi(H) \ge 0$ for all $H \in \mathcal{F}$. Notice $\phi(\emptyset) = 1$.

It can be proved, that $Hom^+(\mathcal{A}, \mathbb{R})$ corresponds exactly to the convergent sequences of graphs.

Theorem (special for graphs) Let $a \in \mathbb{RF}$. $\phi(a) = 0$ for all $\phi \in Hom^+(\mathcal{A}, \mathbb{R})$ iff $a \in \mathcal{K}$.

7: Recall that previously we stated Mantel's theorem as $\leq \frac{1}{2}$ if = 0. What does it formally translate in our new interpretation using $Hom^+(\mathcal{A}, \mathbb{R})$?

Solution: It is saying that for every $\phi \in Hom^+(\mathcal{A}, \mathbb{R})$ holds that

if
$$\phi\left(\bigtriangledown\right) = 0$$
 then $\phi\left(\oint\right) \le \frac{1}{2}$.

We could also develop the whole flag algebras with \mathcal{F} being *triangle-free* graphs instead of all graphs. Let's call such algebras $\mathcal{A}_{\overline{\nabla}}$. Then the statement would be that for all $\phi \in Hom^+(\mathcal{A}_{\overline{\nabla}}, \mathbb{R})$ holds $\phi\left(\bigcup \right) \leq \frac{1}{2}$.

We are interested in finding $a \in \mathcal{A}$ such that for EVERY $\phi \in Hom^+(\mathcal{A}, \mathbb{R})$ we have $\phi(a) \ge 0$. If this happens, we just write $a \ge 0$. Note that Hatami and Norin showed that determining if $a \ge 0$ is not algorithmically decidable.

Example of such a was given last time

$$0 \le 3 \cdot \bullet - \bullet - \bullet + 3 \cdot \bullet . \tag{3}$$

Now we explore a way how to obtain various $a \in \mathcal{A}$ such that $a \geq 0$. Last time we also considered labeled graphs with some fixed embedding of a graph σ . By following the same path as for the unlabeled case, we can define \mathcal{A}^{σ} . Let $\sigma \in F$ be graph with vertices labeled by $1, \ldots, v(\sigma)$.

- \mathcal{F}^{σ} is the set of all graphs each containing a fixed induced labeled copy of σ .
- $\mathcal{F}^{\sigma}_{\ell}$ is the set of elements in \mathcal{F}^{σ} on ℓ vertices.

© () (S) by Bernard Lidický and Jan Volec

- $\mathbb{R}\mathcal{F}^{\sigma}$ are all formal linear combinations of elements in \mathcal{F}^{σ} .
- \mathcal{K}^{σ} is a linear subspace generated by $F \sum_{F' \in \mathcal{F}_{\ell}^{\sigma}} P(F, F')F'$, where $F \in \mathcal{F}^{\sigma}$ and $v(F) \leq \ell$.
- \mathcal{A}^{σ} is $\mathbb{R}\mathcal{F}^{\sigma}$ factorized by \mathcal{K}^{σ} .
- addition in \mathcal{A}^{σ} comes from $\mathbb{R}\mathcal{F}^{\sigma}$
- multiplication in \mathcal{A}^{σ} defined as an extension of $F_1 \cdot F_2 = \sum_{F \in F_{\ell}^{\sigma}} P(F_1, F_2; F)F$, where $F_1, F_2 \in \mathcal{F}$ and $v(F_1) + v(F_2) v(\sigma) = \ell$.
- $Hom^+(\mathcal{A}^{\sigma},\mathbb{R})$ is the set of homomorphism ϕ^{σ} , where $\phi^{\sigma}(F) \geq 0$ for all $F \in \mathcal{F}^{\sigma}$.
- $F \in \mathcal{F}^{\sigma}$ is called a σ -flag.

8: What is 1 for multiplication in \mathcal{A}^{σ} ? Let $a, b \in \mathcal{A}^{\sigma}$ and ab = a. What is b?

Solution: $b = \sigma$, it also means the equivalence class of σ in \mathcal{A} .

Let σ be fixed. We will describe an interaction between $Hom^+(\mathcal{A}, \mathbb{R})$ and $Hom^+(\mathcal{A}^{\sigma}, \mathbb{R})$. First, we fix some $\phi \in Hom^+(\mathcal{A}, \mathbb{R})$. This ϕ corresponds to some converging graph sequence $(G_n)_{n \in \mathbb{N}}$. In order to make some connection with \mathcal{A}^{σ} , we would need a sequence of labeled graphs in \mathcal{F}^{σ} . However, instead of creating a sequence of labeled graphs, we create a sequence of probability distributions generated by picking different copies of σ . For each n separately, we do the following. Pick uniformly at random a labeled copy of σ in G_n , denote result by G_n^{σ} . This allows us to evaluate $P(F, G_n^{\sigma})$ for all $F \in \mathcal{A}^{\sigma}$. By the random choice of σ in G_n , we get some probability distribution $\mathbf{P}_{G_n}^{\sigma}$ on the functions $P(., G_n^{\sigma})$. These $\mathbf{P}_{G_n}^{\sigma}$ then weakly converge to a (unique) probability distribution $\mathbf{P}_{\phi}^{\sigma}$ on $\phi^{\sigma} \in Hom^+(\mathcal{A}^{\sigma}, \mathbb{R})$. We will get back to $\mathbf{P}_{\phi}^{\sigma}$ in a bit.

Let σ be fixed. Our next goal is to define an *averaging* operator that can translate expressions from \mathcal{A}^{σ} to \mathcal{A} . Let $F \in \mathcal{F}^{\sigma}$. Since F has a labeled copy of σ , we can view F and (G, θ) , where $G \in \mathcal{F}$ is an unlabeled copy of F and θ is a function from $1, \ldots, v(\sigma)$ to V(G) that identifies the labeled copy of σ . Let θ' be an injective function from $1, \ldots, v(\sigma)$ to V(G) chosen uniformly at random. Define $q_{\theta}(F)$ to be the probability that (G, θ') is isomorphic to F.

9: Calculate $q_{\theta} \left(\begin{array}{c} \bullet \\ 1 \end{array} \right) = \frac{1}{3}$ $q_{\theta} \left(\begin{array}{c} \bullet \\ 1 \end{array} \right) = \frac{2}{3}$

Finally, for any type σ and $F \in \mathcal{F}^{\sigma}$, we define $\llbracket \cdot \rrbracket_{\sigma} : \mathcal{F}^{\sigma} \to \mathbb{R}\mathcal{F}$ as

 $\llbracket F \rrbracket_{\sigma} = q_{\theta}(F) \cdot G,$

where G is an unlabeled F. Its linear extension is then the averaging operator $\llbracket \cdot \rrbracket_{\sigma} : \mathbb{RF}^{\sigma} \to \mathbb{RF}$. It is linear mapping, not a homomorphism.

10: Calculate

$$\begin{bmatrix} 2 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ \end{bmatrix}_{\sigma} = \frac{6}{20} \begin{pmatrix} 0 & & \\$$

A crucial feature is that if $a \in \mathcal{A}^{\sigma}$ and $\phi \in Hom^+(\mathcal{A}, \mathbb{R})$, then $\phi(\llbracket a \rrbracket_{\sigma})$ is closely related to the expected value of $\phi^{\sigma}(a)$, where ϕ^{σ} is chosen according to $\mathbf{P}^{\sigma}_{\phi}$. Specifically,

$$\phi(\llbracket \sigma \rrbracket_{\sigma}) \cdot \mathbb{E}_{\mathbf{P}_{\phi}^{\sigma}} [\phi^{\sigma}(a)] = \phi(\llbracket a \rrbracket_{\sigma}).$$
(4)

This can be viewed as an analogue of $P(B) \cdot P(A|B) = P(A \wedge B)$. Bonus: For a given $\phi \in Hom^+(\mathcal{A}, \mathbb{R})$, it can be directly shown there exists a unique probability distribution $\mathbf{P}^{\sigma}_{\phi}$ satisfying (4). This distribution is indeed the weak limit of $(\mathbf{P}^{\sigma}_{G_n})_{n \in \mathbb{N}}$ obtained from any sequence $(G_n)_{n \in \mathbb{N}}$ that converges to ϕ . Equation (4) is especially

©€\$© by Bernard Lidický and Jan Volec

useful when $\phi^{\sigma}(a) \geq 0$ with probability one. In this case, (4) yelds $\phi(\llbracket a \rrbracket_{\sigma}) \geq 0$. In particular, we will use that for any $\phi \in Hom^+(\mathcal{A}, \mathbb{R})$ and any $a \in \mathcal{A}^{\sigma}$

$$\phi(\llbracket a \cdot a \rrbracket_{\sigma}) \ge 0.$$

In the simplified notation, we could just write $[\![a \cdot a]\!]_{\sigma} \ge 0$. Note, the inequality $[\![a^2]\!]_{\sigma} \ge 0$ can be also obtained from the following flag version of Cauchy-Schwarz inequality

$$\llbracket a^2 \rrbracket_{\sigma} \cdot \llbracket b^2 \rrbracket_{\sigma} \ge \llbracket ab \rrbracket_{\sigma}^2.$$
⁽⁵⁾

We try another proof of Mantel's theorem. Recall, we consider only triangle-free graphs. We denote the type of one labeled vertex simply by 1.

11: Complete the following inequality into an inequality between unlabeled triangle-free graphs (do not multiply unlabeled graphs)

13: Combine the previous two questions to show Mantel's theorem.

Solution:

Generating $a \ge 0$ using \mathcal{A}^{σ} and $\llbracket . \rrbracket_{\sigma}$

Recall that a symmetric real matrix $M \in \mathbb{R}^{n \times n}$ is *positive semidefinite* if $x^T M x \ge 0$ for all $x \in \mathbb{R}^n$. Denoted by $M \succeq 0$.

14: How to check if $M \in \mathbb{R}^{n \times n}$ is positive semidefinite?

Solution: All eigenvalues of M are non-negative. $M = U^T U$ for some matrix U. All principal minors are non-negative.

Main observation Let σ be fixed. If $M \geq 0$ and X is a vector $(\mathcal{F}_{\ell}^{\sigma})^n$, then for any ϕ^{σ} holds

 $0 \le \phi^{\sigma} \left(X^T M X \right) \qquad \text{hence} \qquad [\![X^T M X]\!]_{\sigma} \ge 0.$

Next we show, that using a semidefinite matrices is analogous to using sum of squares.

Let $a \in \mathcal{A}^{\sigma}$ be a linear combination of σ -flags. Let X be vector of flags in a and let v be a vector of coefficients.

15: Show that $a^2 = X^T M X$ for some matrix $M \succeq 0$. Hint: $M = vv^T$.

Solution: Just expand it: $X^T M X = X^T v v^T X = X^T v \cdot (X^T v) = a \cdot a = a^2$.

© () () by Bernard Lidický and Jan Volec

Math 608:2 5/10

16: In light of the previous exercise, what is $X^T M X$ for general $M \succeq 0$.

Solution: Since we can decompose every $M \in \mathbb{R}^{m \times m}$ into $U^T U$, we can decompose $X^T M X$ into sum of (at most) m squares.

17: Let $M \in \mathbb{R}^{2 \times 2}$, σ be one labeled vertex and X be a vector containing all labeled graphs in \mathcal{F}_2^{σ} . Evaluate $X^T M X$, which is can be also written as: (now we are NOT triangle-free)

$$\left(\begin{array}{c} \bullet\\ 1 \bullet\\ 1 \bullet\\ 1 \bullet\end{array}\right) \left(\begin{array}{c} a & c\\ c & b\end{array}\right) \left(\begin{array}{c} \bullet\\ 1 \bullet\\ 1 \bullet\\ 1 \bullet\\ 1 \bullet\end{array}\right)^T$$

Solution:

$$\begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} \end{pmatrix} \begin{pmatrix} a & c \\ c & b \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} \end{pmatrix}^{T} = a \mathbf{1}^{2} + 2c \mathbf{1} \mathbf{1} + b \mathbf{1}^{2}$$
$$= a \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} + 2c \cdot \frac{1}{2} \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} + b \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} + b \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix}$$
$$= a \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} + c \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} + b \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} + b \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix}$$

18: Use the solution of the previous exercise to evaluate

$$\left[\left(\begin{array}{c} \bullet \\ 1 \bullet \\ 1 \bullet \\ 1 \end{array} \right) \left(\begin{array}{c} a & c \\ c & b \end{array} \right) \left(\begin{array}{c} \bullet \\ 1 \bullet$$

Solution:

$$\begin{bmatrix} \left(\begin{array}{c} \bullet \\ 1 \end{array} \right) \left(\begin{array}{c} a \\ c \end{array} \right) \left(\begin{array}{c} \bullet \\ 1 \end{array} \right) \left(\begin{array}{c} \bullet \\ c \end{array} \right) \left(\begin{array}{c} \bullet \\ 1 \end{array} \right) \left(\begin{array}{c} \bullet \end{array} \right) \left(\begin{array}{c} \bullet \\ 1 \end{array} \right) \left(\begin{array}{c} \bullet \end{array} \right) \left(\begin{array}{c} \bullet \\ 1 \end{array} \right) \left(\begin{array}{c} \bullet \end{array} \right)$$

19: Recall that $[X^T M X]_{\sigma} \ge 0$ is true for ANY $M \ge 0$. Prove that inequality (3) is valid by finding a suitable M. Hint: Use the last solution.

©€\$© by Bernard Lidický and Jan Volec

Solution: Take

$$M = \left(\begin{array}{cc} a & c \\ c & b \end{array}\right) = \left(\begin{array}{cc} 3 & -3 \\ -3 & 3 \end{array}\right)$$

This matrix has eigenvalues 0 and 6 with eigenvectors (1, 1) and (1, -1). Plugging it into the last line of previous question gives exactly (3).

It is also possible to see that M is positive semidefinite since all principal minors are non-negative.

Bonus: A sufficient condition for M being positive semidefinite is that leading principal minors are positive except the last one, which is non-negative. Our matrix satisfies this too. It is easier to verify.

20: We try to prove Mantel's theorem again. Start by summing

$$0 \le b + \frac{b+2c}{3} + \frac{a+2c}{3} + a + a$$

and

$$= \frac{1}{3} \cdot + \frac{2}{3} \cdot + \frac{2}{3} \cdot + \cdot \cdot \cdot$$

Use \checkmark = 0 and try to get \leq function(a, b, c). *Hint: function containing* max. Can you guess a, b, c?

Solution: Since $\bigvee = 0$, we just ignore it in the calculation.

$$= 0 + \frac{1}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{a+2c}{3} + \frac{a+2c}{3$$

Summing together we get

$$= b^{\bullet} + \frac{1+b+2c}{3} \cdot \underbrace{\bullet} + \frac{2+a+2c}{3} \cdot \underbrace{\bullet} \\ \leq \max\left\{b, \frac{1+b+2c}{3}, \frac{2+a+2c}{3}\right\} \cdot \left(\bullet^{\bullet} + \underbrace{\bullet} + \underbrace{\bullet} + \underbrace{\bullet}\right) \\ = \max\left\{b, \frac{1+b+2c}{3}, \frac{2+a+2c}{3}\right\}$$

Since we want the upper bound to be $\leq 1/2$, we can go with b = 1/2. To make the whole thing fit, we pul also a = 1/2 and c = -1/2. Then we get

$$\le \max\left\{\frac{1}{2}, \frac{1}{6}, \frac{1}{2}\right\} = \frac{1}{2}$$

Notice that a part of the last solution for Mantel's theorem can be stated as

$$\leq \max\left\{b, \frac{1+b+2c}{3}, \frac{2+a+2c}{3}\right\}$$

while a, b, c had to form a positive semidefinite matrix. It is not completely obvious how to guess a, b, c. This can be written as a semidefinite program. One could think of it as a linear program with a bonus constraint that the variables together form a positive semidefinite matrix. A writeup of the program follows.

$$(SDP) \begin{cases} \text{Minimize} & t \\ \text{subject to} & a \leq t \\ & \frac{1+a+2c}{3} \leq t \\ & \frac{2+b+2c}{3} \leq t \\ & \begin{pmatrix} a & c \\ c & b \\ & t \geq 0 \end{cases} \succcurlyeq 0$$

(SDP) can be solved on computers using freely available software CSDP or SDPA. What many flag algebra applications do is set up a semidefinite program and try to solve it. We will explore semidefinite programming next time.

21: What constraints must be satisfied by a, b, c to guarantee that

$$\left(\begin{array}{cc}a&c\\c&b\end{array}\right)\succcurlyeq 0$$

Solution: Positive semidefinite matrix must have entries in the diagonal ≥ 0 . Hence $a, b \geq 0$. Then also the determinant must be non-negative. So $ab - c^2 \geq 0$. Notice that this is giving some kind of a quadratic constraint on c.

22: Calculate the following product as a linear combination of graphs on 3 vertices.

$$K_1 \cdot \boxed{} = 0 \cdot \bullet + \frac{1}{3} \cdot \bullet + \frac{2}{3} \cdot \bullet + 1 \cdot \bullet \bullet$$

Solution: Notice that the right-hand side is *identical* to (1).

23: Let *H* be a fixed graph on ℓ vertices. Calculate the following product as a linear combination of graphs on $\ell + 1$ vertices.

$$K_1 \cdot H = \sum_{F \in \mathcal{F}_{\ell+1}} P(H, F) \cdot F$$

Solution: Recall that

$$H = \sum_{F \in \mathcal{F}_{\ell+1}} P(H, F) \cdot F$$

24: Let *H* be a fixed graph and \mathcal{F} be a class of graphs closed under taking subrgaphs. For example, triangle-free graphs. Show that

$$\lim_{n \to \infty} \max\{P(H, G) : G \in \mathcal{F}_{\ell}\}$$

exists.

Solution: We show that $\max\{P(H,G) : G \in \mathcal{F}_{\ell}\}$ is monotone non-increasing. Suppose that $\max\{P(H,G) : G \in \mathcal{F}_{\ell}\} = a \in [0,1]$. Suppose for contradiction that there exists $G' \in \mathcal{F}_{\ell'}$, where $\ell' > \ell$ and P(H,G') > a. Then

$$a < P(H, G') = \sum_{F \in \mathcal{F}_{\ell}} P(H, F) \cdot P(F, G') \le \sum_{F \in \mathcal{F}_{\ell}} a \cdot P(F, G') = a,$$

which is a contradiction.

25: Use (5), i.e., $\llbracket a^2 \rrbracket_{\sigma} \cdot \llbracket b^2 \rrbracket_{\sigma} \ge \llbracket ab \rrbracket_{\sigma}^2$, to show

$$\llbracket a^2 \rrbracket_{\sigma} \ge \frac{\llbracket a \rrbracket_{\sigma}^2}{\llbracket \sigma \rrbracket_{\sigma}}$$

Solution: We use $b = \sigma$ and get

$$\llbracket a^2 \rrbracket_{\sigma} \cdot \llbracket \sigma \rrbracket_{\sigma} = \llbracket a^2 \rrbracket_{\sigma} \cdot \llbracket \sigma^2 \rrbracket_{\sigma} \ge \llbracket a \sigma \rrbracket_{\sigma}^2 = \llbracket a \rrbracket_{\sigma}^2.$$

26: Let $(G_n)_{n \in \mathbb{N}}$ be a convergent sequence, where G_n is disjoint union of a clique on n vertices and n isolated vertices $(v(G_n) = 2n)$. Denote the corresponding homomorphism by ϕ .

• Show that $(G_n)_{n \in \mathbb{N}}$ is indeed convergent.

• Let
$$\sigma$$
 be $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$. Determine $\mathbf{P}_{\phi}^{\sigma}$.

© () (S) by Bernard Lidický and Jan Volec

• Compute
$$\mathbb{E}_{\mathbf{P}_{\phi}^{\sigma}}\left[\phi^{\sigma}\left(\begin{array}{c}2 & & \\ & 1 \end{array}\right)\right], \phi\left(\left[\begin{array}{c}2 & & \\ & 1 \end{array}\right]_{\sigma}\right), \text{ and } \phi(\llbracket\sigma\rrbracket_{\sigma}).$$
 Compare with (4), which states $\phi(\llbracket\sigma\rrbracket_{\sigma}) \cdot \mathbb{E}_{\mathbf{P}_{\phi}^{\sigma}}\left[\phi^{\sigma}(a)\right] = \phi(\llbracketa\rrbracket_{\sigma}).$

27: The proof of Mantel's theorem can be written as just one square instead of the whole positive semidefinite matrix. Can you find how?