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Flag Algebras on Limits of Graph Sequences

Today, we finally define some algebras A and Aσ. We try to develop an analogue for P (., G) in the limit. We
start by defining A. We denote the set all graphs up to isomorphism by F and the set of all graphs on exactly
` vertices by F`. Let RF be the set of all formal linear combinations of graphs in F . This RF will be used to
derive A. In order to do that, we need to somehow define addition and multiplication on RF .

1: How to obviously define the addition of elements in RF and the multiplication by a real number?

Solution: For addition of a, b ∈ RF , just add the coefficients together.

Recall we used linear combinations of graphs last time, but they had some extra interpretation using P (., G).
Our goal is to eventually have a similar interpretation for RF and A.

2: Let F1, F2 ∈ F . Can you write F1 · F2 as an element in RF inspired by our efforts last time?

Solution:
F1 · F2 =

∑
F∈F`

P (F1, F2;F )F,

where v(F1) + v(F2) = `. Notice, there is NO +o(1).

3: How to “define” a multiplication of a, b ∈ RF?

Solution: One could say that having a, b ∈ RF it would be possible to do entry wise
product from the previous exercise. A small trouble is that F1 · F2 can be written in
many ways as a linear combination so this is not a great multiplication.

In addition to the “uniqueness trouble” in multiplication for RF , we would also like to enforce identities such
as

=
1

3
· +

2

3
· + . (1)

We do this by factorizing RF by a suitable subspace K. Let K be a linear subspace of RF generated by all
elements of the form

F −
∑
F ′∈F`

P (F, F ′)F ′, (2)

where F ∈ F and v(F ) ≤ `.

4: What is the value of (2) in our previous interpretation using P (., G)?

Solution: 0

Finally, the algebra A is RF factorized by K. Notice that a, b ∈ RF belong to the same equivalence class iff
a = b+ c for some c ∈ K.

This also fixes the uniqueness in multiplication (which we are not proving here). Personal note: I just think of
it all as RF , where some additional equations hold. Not as the formal A. An analogue is Q for A and Z × Z
for RF . We get 1

2 = 2
4 = 4

8 = 3
6 = · · · .
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Now we try to make A somehow useful by providing a similar interpretation as P (?, G) from last time. Notice
we do not have +o(1) in multiplication, so we cannot really use P (?, G) but we will use limits of P (?, G).

Definition: A sequence of graphs (Gn)n∈N is convergent if for every finite graph H, limn→∞ P (H,Gn) exists.

Notice that the limit of convergent sequence can be viewed as vector of numbers in [0, 1] indexed by all finite
graphs, i.e., a function F → [0, 1].

5: Show that (Kn)n∈N is convergent, where Kn is the complete graph on n vertices. What is the limit?

Solution: The limit is quite simple. If H is a complete graph, then the limit of
p(H,Kn) is 1, otherwise it is 0.

6: Show that (Pn)n∈N is convergent, where Pn is a path on n vertices. What is the limit?

Solution: The limit is not difficult. For any H that contains an edge, p(H,Pn) is 0
and if H has no edges, then p(H,Pn) = 1.

Now we get to the promised replacement of P (., G). Let Hom(A,R) be the set of all homomorphisms from A
to R. So for any φ ∈ Hom(A,R) and a, b ∈ A, we have that φ(a + b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b).
Since p(H,G) ∈ [0, 1], we consider only Hom+(A,R), which are homomorphism φ such that φ(H) ≥ 0 for all
H ∈ F . Notice φ(∅) = 1.

It can be proved, that Hom+(A,R) corresponds exactly to the convergent sequences of graphs.

Theorem (special for graphs) Let a ∈ RF . φ(a) = 0 for all φ ∈ Hom+(A,R) iff a ∈ K.

7: Recall that previously we stated Mantel’s theorem as ≤ 1
2 if = 0. What does it formally translate

in our new interpretation using Hom+(A,R)?

Solution: It is saying that for every φ ∈ Hom+(A,R) holds that

if φ
( )

= 0 then φ

( )
≤ 1

2
.

We could also develop the whole flag algebras with F being triangle-free graphs instead
of all graphs. Let’s call such algebras A∇. Then the statement would be that for all

φ ∈ Hom+(A∇,R) holds φ

( )
≤ 1

2 .

We are interested in finding a ∈ A such that for EVERY φ ∈ Hom+(A,R) we have φ(a) ≥ 0. If this happens,
we just write a ≥ 0. Note that Hatami and Norin showed that determining if a ≥ 0 is not algorithmically
decidable.

Example of such a was given last time

0 ≤ 3 · − − + 3 · . (3)

Now we explore a way how to obtain various a ∈ A such that a ≥ 0. Last time we also considered labeled
graphs with some fixed embedding of a graph σ. By following the same path as for the unlabeled case, we can
define Aσ. Let σ ∈ F be graph with vertices labeled by 1, . . . , v(σ).

• Fσ is the set of all graphs each containing a fixed induced labeled copy of σ.

• Fσ` is the set of elements in Fσ on ` vertices.
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• RFσ are all formal linear combinations of elements in Fσ.

• Kσ is a linear subspace generated by F −
∑

F ′∈Fσ`
P (F, F ′)F ′, where F ∈ Fσ and v(F ) ≤ `.

• Aσ is RFσ factorized by Kσ.

• addition in Aσ comes from RFσ

• multiplication in Aσ defined as an extension of F1 · F2 =
∑

F∈Fσ`
P (F1, F2;F )F, where F1, F2 ∈ F and

v(F1) + v(F2)− v(σ) = `.

• Hom+(Aσ,R) is the set of homomorphism φσ, where φσ(F ) ≥ 0 for all F ∈ Fσ.

• F ∈ Fσ is called a σ-flag.

8: What is 1 for multiplication in Aσ? Let a, b ∈ Aσ and ab = a. What is b?

Solution: b = σ, it also means the equivalence class of σ in A.

Let σ be fixed. We will describe an interaction between Hom+(A,R) and Hom+(Aσ,R). First, we fix some
φ ∈ Hom+(A,R). This φ corresponds to some converging graph sequence (Gn)n∈N. In order to make some
connection with Aσ, we would need a sequence of labeled graphs in Fσ. However, instead of creating a sequence
of labeled graphs, we create a sequence of probability distributions generated by picking different copies of σ.
For each n separately, we do the following. Pick uniformly at random a labeled copy of σ in Gn, denote
result by Gσn. This allows us to evaluate P (F,Gσn) for all F ∈ Aσ. By the random choice of σ in Gn, we get
some probability distribution Pσ

Gn
on the functions P (., Gσn). These Pσ

Gn
then weakly converge to a (unique)

probability distribution Pσ
φ on φσ ∈ Hom+(Aσ,R). We will get back to Pσ

φ in a bit.

Let σ be fixed. Our next goal is to define an averaging operator that can translate expressions from Aσ to A.
Let F ∈ Fσ. Since F has a labeled copy of σ, we can view F and (G, θ), where G ∈ F is an unlabeled copy
of F and θ is a function from 1, . . . , v(σ) to V (G) that identifies the labeled copy of σ. Let θ′ be an injective
function from 1, . . . , v(σ) to V (G) chosen uniformly at random. Define qθ(F ) to be the probability that (G, θ′)
is isomorphic to F .

9: Calculate qθ

(
1

)
= 1

3 qθ

(
1

)
= 2

3

Finally, for any type σ and F ∈ Fσ, we define J·Kσ : Fσ → RF as

JF Kσ = qθ(F ) ·G,

where G is an unlabeled F . Its linear extension is then the averaging operator J·Kσ : RFσ → RF . It is linear
mapping, not a homomorphism.

10: Calculate u

v
1

2
}

~

σ

=
6

20

A crucial feature is that if a ∈ Aσ and φ ∈ Hom+(A,R), then φ(JaKσ) is closely related to the expected value
of φσ(a), where φσ is chosen according to Pσ

φ. Specifically,

φ(JσKσ) · EPσφ
[φσ(a)] = φ(JaKσ). (4)

This can be viewed as an analogue of P (B) ·P (A|B) = P (A∧B). Bonus: For a given φ ∈ Hom+(A,R), it can
be directly shown there exists a unique probability distribution Pσ

φ satisfying (4). This distribution is indeed
the weak limit of (Pσ

Gn
)n∈N obtained from any sequence (Gn)n∈N that converges to φ. Equation (4) is especially
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useful when φσ(a) ≥ 0 with probability one. In this case, (4) yelds φ(JaKσ) ≥ 0. In particular, we will use that
for any φ ∈ Hom+(A,R) and any a ∈ Aσ

φ(Ja · aKσ) ≥ 0.

In the simplified notation, we could just write Ja · aKσ ≥ 0. Note, the inequality Ja2Kσ ≥ 0 can be also obtained
from the following flag version of Cauchy-Schwarz inequality

Ja2Kσ · Jb2Kσ ≥ JabK2σ. (5)

We try another proof of Mantel’s theorem. Recall, we consider only triangle-free graphs. We denote the type
of one labeled vertex simply by 1.

11: Complete the following inequality into an inequality between unlabeled triangle-free graphs (do not
multiply unlabeled graphs)

2

=

u

v
11

}

~
2

1

≤

u

v
11

2}

~

1

=

t

1

|

1

=
1

3

12: Use (1) to show
1

3
≤ 1

2
.

Solution:

=
1

3
· +

2

3
· ≥ 2

3
·

13: Combine the previous two questions to show Mantel’s theorem.

Solution:
2

≤ 1

3
· ≤ 1

2
hence ≤ 1

2

Generating a ≥ 0 using Aσ and J.Kσ

Recall that a symmetric real matrix M ∈ Rn×n is positive semidefinite if xTMx ≥ 0 for all x ∈ Rn. Denoted
by M < 0.

14: How to check if M ∈ Rn×n is positive semidefinite?

Solution: All eigenvalues of M are non-negative. M = UTU for some matrix U . All
principal minors are non-negative.

Main observation Let σ be fixed. If M < 0 and X is a vector (Fσ` )n, then for any φσ holds

0 ≤ φσ
(
XTMX

)
hence JXTMXKσ ≥ 0.

Next we show, that using a semidefinite matrices is analogous to using sum of squares.

Let a ∈ Aσ be a linear combination of σ-flags. Let X be vector of flags in a and let v be a vector of coefficients.

15: Show that a2 = XTMX for some matrix M � 0. Hint: M = vvT .

Solution: Just expand it: XTMX = XTvvTX = XTv · (XTv) = a · a = a2.
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16: In light of the previous exercise, what is XTMX for general M � 0.

Solution: Since we can decompose every M ∈ Rm×m into UTU , we can decompose
XTMX into sum of (at most) m squares.

17: Let M ∈ R2×2, σ be one labeled vertex and X be a vector containing all labeled graphs in Fσ2 . Evaluate
XTMX, which is can be also written as: (now we are NOT triangle-free)

11
,
11

( a c
c b

)
11

,
11

T

Solution: (
11
,
11

)(
a c
c b

)(
11
,
11

)T

= a
11

2

+ 2c
11
·
11

+ b
11

2

= a

(
1

+
1

)
+ 2c · 1

2

(
1

+
1

)
+ b

(
1

+
1

)
= a

(
1

+
1

)
+ c

(
1

+
1

)
+ b

(
1

+
1

)

18: Use the solution of the previous exercise to evaluate

u

w
v


11

,
11

( a c
c b

)
11

,
11

T
}

�
~

σ

Solution:
u

v
(

11
,
11

)(
a c

c b

)(
11
,
11

)T
}

~

σ

=

s
a

(
1

+
1

)
+ c

(
1

+
1

)
+ b

(
1

+
1

){

σ

= a

(s

1

{

σ

+

s

1

{

σ

)
+ c

(s

1

{

σ

+

s

1

{

σ

)
+ b

(s

1

{

σ

+

s

1

{

σ

)
= a

(
1

3
+

)
+ c

(
2

3
+

2

3

)
+ b

(
+

1

3

)
= b · +

b+ 2c

3
· +

a+ 2c

3
· + a ·

19: Recall that JXTMXKσ ≥ 0 is true for ANY M < 0. Prove that inequality (3) is valid by finding a
suitable M . Hint: Use the last solution.

cbna by Bernard Lidický and Jan Volec
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Solution: Take

M =

(
a c
c b

)
=

(
3 −3
−3 3

)
This matrix has eigenvalues 0 and 6 with eigenvectors (1, 1) and (1,−1). Plugging it
into the last line of previous question gives exactly (3).
It is also possible to see that M is positive semidefinite since all principal minors are
non-negative.

Bonus: A sufficient condition for M being positive semidefinite is that leading principal
minors are positive except the last one, which is non-negative. Our matrix satisfies this
too. It is easier to verify.
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20: We try to prove Mantel’s theorem again. Start by summing

0 ≤ b +
b+ 2c

3
+
a+ 2c

3
+ a

and

=
1

3
· +

2

3
· + .

Use = 0 and try to get ≤ function(a, b, c). Hint: function containing max. Can you guess a, b, c?

Solution: Since = 0, we just ignore it in the calculation.

= 0 +
1

3
· +

2

3
·

0 ≤ b +
b+ 2c

3
+
a+ 2c

3

Summing together we get

= b +
1 + b+ 2c

3
· +

2 + a+ 2c

3
·

≤ max

{
b,

1 + b+ 2c

3
,
2 + a+ 2c

3

}
·
(

+ +
)

= max

{
b,

1 + b+ 2c

3
,
2 + a+ 2c

3

}
Since we want the upper bound to be ≤ 1/2, we can go with b = 1/2. To make the
whole thing fit, we pul also a = 1/2 and c = −1/2. Then we get

≤ max

{
1

2
,
1

6
,
1

2

}
=

1

2
.
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Notice that a part of the last solution for Mantel’s theorem can be stated as

≤ max

{
b,

1 + b+ 2c

3
,
2 + a+ 2c

3

}
while a, b, c had to form a positive semidefinite matrix. It is not completely obvious how to guess a, b, c. This
can be written as a semidefinite program. One could think of it as a linear program with a bonus constraint
that the variables together form a positive semidefinite matrix. A writeup of the program follows.

(SDP )



Minimize t

subject to a ≤ t
1+a+2c

3 ≤ t
2+b+2c

3 ≤ t(
a c

c b

)
< 0

t ≥ 0

(SDP ) can be solved on computers using freely available software CSDP or SDPA. What many flag algebra
applications do is set up a semidefinite program and try to solve it. We will explore semidefinite programming
next time.

21: What constraints must be satisfied by a, b, c to guarantee that(
a c
c b

)
< 0

Solution: Positive semidefinite matrix must have entries in the diagonal ≥ 0. Hence
a, b ≥ 0. Then also the determinant must be non-negative. So ab− c2 ≥ 0. Notice that
this is giving some kind of a quadratic constraint on c.
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https://creativecommons.org/licenses/by-nc-sa/4.0/


Math 608:2 9/10

22: Calculate the following product as a linear combination of graphs on 3 vertices.

K1 · = 0 · +
1

3
· +

2

3
· + 1 ·

Solution: Notice that that the right-hand side is identical to (1).

23: Let H be a fixed graph on ` vertices. Calculate the following product as a linear combination of graphs
on `+ 1 vertices.

K1 ·H =
∑

F∈F`+1

P (H,F ) · F

Solution: Recall that
H =

∑
F∈F`+1

P (H,F ) · F

24: Let H be a fixed graph and F be a class of graphs closed under taking subrgaphs. For example,
triangle-free graphs. Show that

lim
n→∞

max{P (H,G) : G ∈ F`}

exists.

Solution: We show that max{P (H,G) : G ∈ F`} is monotone non-increasing.
Suppose that max{P (H,G) : G ∈ F`} = a ∈ [0, 1]. Suppose for contradiction that
there exists G′ ∈ F`′, where `′ > ` and P (H,G′) > a. Then

a < P (H,G′) =
∑
F∈F`

P (H,F ) · P (F,G′) ≤
∑
F∈F`

a · P (F,G′) = a,

which is a contradiction.

25: Use (5), i.e., Ja2Kσ · Jb2Kσ ≥ JabK2σ, to show

Ja2Kσ ≥
JaK2σ
JσKσ

.

Solution: We use b = σ and get

Ja2Kσ · JσKσ = Ja2Kσ · Jσ2Kσ ≥ JaσK2
σ = JaK2

σ.

26: Let (Gn)n∈N be a convergent sequence, where Gn is disjoint union of a clique on n vertices and n isolated
vertices (v(Gn) = 2n). Denote the corresponding homomorphism by φ.

• Show that (Gn)n∈N is indeed convergent.

• Let σ be

1

2
. Determine Pσ

φ.
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• Compute EPσφ

φσ


1

2
, φ

u

v
1

2
}

~

σ

, and φ(JσKσ). Compare with (4), which states

φ(JσKσ) · EPσφ
[φσ(a)] = φ(JaKσ).

27: The proof of Mantel’s theorem can be written as just one square instead of the whole positive semidefinite
matrix. Can you find how?
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